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1 Abstract
Brain tumors are abnormal growths of cells that develop within the brain tissue. They
can originate from different cell types within the brain and can be benign (non-cancerous)
or malignant (cancerous). Brain tumors can interfere with normal brain function and
can cause a variety of symptoms depending on their location, invasiveness, growth rate,
and size. These tumors can be identified using imaging techniques such as magnetic
resonance imaging (MRI), computed tomography (CT), and positron-emitted tomog-
raphy (PET). They can further be classified based on their histological characteristics,
molecular profiles, and location within the brain. Brain tumors are a significant health
concern with profound implications for patient diagnosis, treatment, and overall prog-
nosis. Early detection, accurate diagnosis, and appropriate treatment are essential in
managing brain tumors and improving patient outcomes.

In recent years, advanced medical imaging techniques, such as magnetic resonance
imaging (MRI), have played a pivotal role in the non-invasive assessment of brain tu-
mors. These imaging modalities provide detailed anatomical and functional informa-
tion, enabling clinicians to visualize and analyze the extent, location, and characteristics
of brain tumors. MRI is a powerful medical imaging technique that uses a combination
of magnetic fields and radio waves to generate detailed and high-resolution images
of the internal structures of the body, including the brain. It provides a non-invasive
method for visualizing the soft tissues, organs, and structures within the brain, allow-
ing healthcare professionals to evaluate and diagnose various neurological conditions
and abnormalities. MRI scans offer better contrast between different types of brain
tissue than other imaging techniques, enabling the detection of tumors, lesions, blood
vessel abnormalities, and other structural anomalies. Based on the mode of operation,
MR scanners can generate T1-weighted, T2-weighted, Fluid attenuated inversion recov-
ery (FLAIR), and contrast-enhanced T1-weighted (T1CE) images focusing on different
information like tissues, fat, contrast agents, and water. MR imaging modalities are
crucial in guiding treatment planning, monitoring disease progression, and assessing
treatment response in patients with brain disorders.

Manual identification of brain tumors in MR images is laborious, time-consuming,
and human error-prone. Automatic segmentation of brain tumors from MR images
aims to bridge the gap. The integration of advanced image processing algorithms and
machine learning techniques has shown great promise in enhancing the accuracy and
efficiency of brain tumor detection, segmentation, and classification. In recent years,
deep learning models have been the go-to approach for segmenting brain tumors. U-
Net and its’ variants for semantic segmentation of medical images have achieved good
results in the literature. However, they tend to over-segment tumor regions and may
not accurately segment the tumor edges and small regions. It has a significant impact
on deploying such models for practical use. The thesis provides an overview of the
current state-of-the-art techniques and methodologies in segmenting brain tumors. It
explores the challenges associated with brain tumor segmentation and discusses three
deep learning-based solutions that aim to bridge the gap in the segmentation of brain
tumors. All the solutions have been studied on the BraTS2020 benchmark dataset, and
the results are tabulated using the dice and Hausdorff95 metrics.

The initial work proposes a hybrid U-Net which adds residual, multi-resolution,
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dual attention, and deep supervision blocks to the baseline U-Net model. The U-Net
has several drawbacks, namely, merging of low-level features with high-level features
in the skip connection, over-segmentation, lack of global context, and learning lots of
similar feature maps resulting in wastage of memory. The goal of introducing residual
blocks is to extract features efficiently to reduce the semantic gap between low-level
features from the decoder and high-level features from skip connections. The multiple
resolution blocks have been added to extract features and analyze tumors of varying
scales. The dual attention mechanism has been incorporated to highlight tumor repre-
sentations and reduce over-segmentation. Finally, deep supervision blocks have been
added to utilize features from various decoder layers to obtain the target segmentation.
The proposed model has been trained and evaluated on the BraTS2020 training and val-
idation datasets. On the validation data, the proposed model has achieved a dice score
of 0.691, 0.876, and 0.644 for enhancing tumor (ET), whole tumor (WT), and tumor
core (TC), respectively, and a Hausdorff95 score of 34.43, 14.58, and 32.93, respec-
tively. Compared to the baseline U-Net, the proposed model has outperformed WT and
ET volumes in the dice score metric except for the CT volume. In the Hausdorff95
metric, the proposed method outperforms other U-Net models in the ET volume. The
model achieved the performance with 505,559 parameters significantly smaller than the
parameters required by the other models. At the end of the work, there is a significant
need to improve the model in the Hausdorff metric.

The next work proposes a data-oriented approach to improve the edge detection
capabilities of semantic segmentation models. The intermediate edges are extracted
from the ground truth using a 3D derivative-like filter. The edges are reconstructed
from the ground truth to obtain the tumor edges. The generated edge map is consid-
ered an additional ground truth. Utilizing both ground truths, several U-Net and its’
variant architectures are trained with and without tumor edges as a target. Compared
to the baseline U-Net and its variants, the models that learned edges along with the
tumor regions performed well in the enhancing and core tumor regions in both train-
ing and validation datasets. The improved performance of edge-trained models trained
on baseline models like U-Net and V-Net achieved performance similar to baseline
state-of-the-art models like Swin U-Net and hybrid MR-U-Net. The edge-target trained
models can generate edge maps useful for treatment planning. Additionally, for further
explainability of the results, the activation map generated by the hybrid MR-U-Net has
been studied. On the validation data, the hybrid edge MR-U-Net model has achieved
a dice score of 0.682, 0.847, and 0.693 for enhancing tumor (ET), whole tumor (WT),
and tumor core (TC), respectively, and a Hausdorff95 score of 40.70, 19.76, and 20.88,
respectively. Compared to the baseline Hybrid MR-U-Net, the edge Hybrid MR-U-Net
model has outperformed in TC in the Hausdorff95 distance and dice metric but has de-
graded performance in WT and ET volumes. One reason for the poor performance is
the high penalty for false positives without a tumor region. Also, the dataset is multi-
institutional, and there could be under-represented MR images resulting in poor results
in the validation dataset.

To address under-represented data and false positives, the final work focuses on
learning hard samples and giving more weight to false positive cases. Hard samples
are images with a higher loss value at the end of an epoch. The loss for each sample
is stored in a list and sorted in non-increasing order at the end of the epoch. In the
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next epoch, δ percent of the whole dataset is selected for training instead of the whole
dataset. The idea is to train high-loss samples multiple times to learn under-represented
samples. In the proposed work, δ is set at 20%. In general, false positives are heavily
penalized without a tumor region. So, two losses, namely, a weighted focal loss and
a false positive (FP) loss, have been proposed to better learn false positive cases in
the dataset. On the validation data, the Hybrid MR-U-Net Weighted Focal model has
achieved a dice score of 0.674, 0.874, and 0.710 for enhancing tumor (ET), whole tumor
(WT), and tumor core (TC), respectively, and a Hausdorff95 score of 41.62, 8.81, and
12.81, respectively. Similarly, the Hybrid MR-U-Net FP-Loss model has achieved a
dice score of 0.674, 0.870, and 0.676 for enhancing tumor (ET), whole tumor (WT),
and tumor core (TC), respectively, and a Hausdorff95 score of 38.66, 8.43, and 17.43,
respectively. Compared to the popular U-Net models and several works in the literature,
both the models have outperformed in WT and TC regions in the Hausdorff95 distance
showing an improved detection of edges. However, the false positive rates in ET remain
high, and there is a scope for improvement in the dice score. Also, the number of times
a sample image is trained has been suggested as a methodology to identify outliers.
It could act as an indicator to identify under-represented samples in the training data,
potentially helping data collection. It could also help in identifying gaps in the current
segmentation methods.

2 Objectives
The objectives of the research are as follows,

(a) To propose algorithms for automatically segmenting brain tumors using magnetic
resonance imaging.

(b) To improve the U-Net model for better semantic segmentation performance for
brain tumor segmentation.

(c) To extract tumor edges and study the performance of deep learning models pro-
vided with and without tumor edges for brain tumor segmentation.

(d) To develop a dynamic batch training algorithm to identify hard samples, study the
performance of deep learning models and compare with the traditional training
algorithm.

(e) To utilize dynamic batch training algorithm to identify potential outliers for brain
tumor segmentation.

3 Existing Gaps Which Were Bridged
The existing gaps which were bridged in the work are as follows,

(a) Improved Hybrid U-Net: Implemented a U-Net that includes multi-resolution
blocks, dual attention blocks, and deep supervision blocks. The model performs
better with 1

4
th the number of parameters of the baseline U-Net.
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(b) Explored Data-oriented Approach: Extract edges from the ground truth and
learn edges and tumor regions as targets for brain tumor segmentation using MR
images. By providing the model with explicit edge information as learning targets
to enable more precise and accurate segmentation of brain tumors.

(c) Confident Tumor Detection: Learning of tumor edges along with the tumor
segments resulted in higher activation of the tumor regions. The activation maps
capture it.

(d) Dynamic Batch Training to Learn Hard Samples: The training of hard sam-
ples focused on false positives and high lossy samples showed an improved per-
formance measured by the Hausdorff95 metric.

(e) Dynamic Batch Training to Identify Outliers:Identify outliers in the training
data using the number of times a data point is trained.

4 Most Important Contributions
Figure 1 illustrates a sample 2D axial input MR Images and the corresponding ground
truth. The input images (a-c), and the different MR modalities, namely, FLAIR, T1CE,
and T2 images, are visualized. The ground truth consists of peritumoral edema (ED)
marked in light grey given by an intensity value of 2, enhancing tumor (ET) represented
as a white region with 4 as an intensity value, and the non-enhancing tumor (NET)
and necrotic core region (NCR) as dark grey with an intensity value of 1. The models
are evaluated as enhancing tumor (ET), tumor core (TC), and whole tumor (WT). The
tumor core corresponds to NET/NCR and the enhancing tumor region. The whole tumor
corresponds to all three tumor regions put together. The goal of the research is to learn
the ED, NET/NCR, and ET regions. All the experiments have been carried out on the
BraTS2020 dataset. The three most important contributions are given below,

(a) FLAIR Image (b) T1CE Image (c) T2 Image (d) Ground Truth

Figure 1: Shows a sample 2D axial input MR Images (a-c) and the corresponding
ground truth (d). In the ground truth, the white region corresponds to the en-
hancing tumor (ET), the dark grey region corresponds to the necrosis and non-
enhancing tumor (NCR/NET), and the light grey area represents the edema
region (ED) (Sahayam et al. (2022)).
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4.1 Hybrid Multi-Resolution U-Net For Brain Tumor Segmenta-
tion

Figure 2 shows the architecture of the hybrid MR-U-Net. The drawbacks of the U-Net
model include merging low-level features with high-level features at the skip connec-
tion, difficulty detecting small-scale tumors, and over-segmentation. The hybrid U-Net
model utilizes multiple resolutions blocks (MRB) Ibtehaz and Rahman (2020), residual
blocks (RB) He et al. (2016), dual attention blocks (DAB) Hariyani et al. (2020) and a
deep supervision block (DSB) Lee et al. (2015) to enhance the segmentation ability of
baseline U-Net model.

Deep SupervisionEncoder Decoder Prediction

Multi Resolution (MR) 
Block

Residual  
Dual Attention Block

Residual (RES) Path

Feature Maps 
from Attention Block  

and MR Block 

Max Pooling

Concatenated  
Feature Maps

Input and Output

Concatenation  
Operation

Concatenated Feature Maps 
 in Deep Supervision step

T1CE

FLAIR

T2

Figure 2: Proposed MultiResolution U-net with Residual Dual Attention and Deep Su-
pervision Sahayam et al. (2022)

Table 1 compares different models on the validation dataset for brain tumor segmen-
tation. The models are evaluated based on their Dice Score and Hausdorff95 metrics,
with higher values for Dice Score and lower values for Hausdorff95 indicating better
performance. The proposed Hybrid MR-U-Net achieves the overall best performance
with a Dice Score of 0.691 for ET and 0.876 for WT. The Hybrid MR-U-Net also
achieves the best Hausdorff95 score for ET, which is 34.43. The proposed model has
505,559 parameters, and it is 1

4
th number of parameters of baseline U-Net to achieve

better performance.

4.2 Learning Tumor Edges and Segments for Brain Tumor Seg-
mentation Using Deep Learning

The workflow of the proposed methodology is shown in Figure 3. The workflow can
be broken down into Z-score normalization, edge extraction, one-hot representation,
and training deep learning models. The work utilizes FLAIR, T2, and T1CE 3D MRI
modalities and the ground truth for segmentation. The edges are extracted and recon-
structed using a Laplacian-like 3D filter. Several U-Net models are trained with edge
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Table 1: Comparison of the mean of different models on the validation dataset. The
values in bold are the overall best.

Dice Score ↑ Hausdorff95 ↓
Model

ET WT TC ET WT TC
Parameters

U-Net Ronneberger et al. (2015) 0.688 0.875 0.649 36.15 15.15 26.90 2,145,860
V-Net Milletari et al. (2016) 0.664 0.873 0.673 51.19 15.94 24.69 3,799,236

Attention U-Net Oktay et al. (2018) 0.646 0.863 0.679 56.37 16.81 27.09 2,167,703
U-Net 3 Plus Huang et al. (2020) 0.663 0.868 0.665 48.21 14.50 26.47 1,994,860

Swin U-Net Cao et al. (2023) 0.641 0.860 0.682 43.57 11.13 16.95 715,532
Hybrid MR-U-Net 0.691 0.876 0.644 34.43 14.58 32.93 505,559

and tumor regions as targets.
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Figure 3: Shows the flow diagram of the proposed methodology to learn tumor edges
and segments together.

Table 2 shows the mean validation results obtained for popular U-Net models and
the proposed Hybrid MR-U-Net models. It can be observed the earlier models like
U-Net, V-Net, and Attention U-Net show improvements when training with edges as
targets in the enhancing and core tumor dice and Hausdorff95 score. All the models
except the swin transformer performed well in dice and Hausdorff95 for tumor core
trained with edges as targets along with the tumor regions.
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Table 2: Comparison of the mean of different models on the validation dataset.1

Dice Score ↑ Hausdorff95 ↓
Model

ET WT TC ET WT TC
U-Net Ronneberger et al. (2015) 0.688 0.875 0.649 36.15 15.15 26.90

U-Net Edge 0.692 0.58% 0.867 0.91% 0.671 3.38% 38.69 7.02% 13.41 11.48% 22.83 15.13%
V-Net Milletari et al. (2016) 0.664 0.873 0.673 51.19 15.94 24.69

V-Net Edge 0.678 2.11% 0.869 0.46% 0.675 0.30% 42.39 17.19% 13.66 14.30% 21.14 14.37%
Attention U-Net Oktay et al. (2018) 0.646 0.863 0.679 56.37 16.81 27.09

Attention U-Net Edge 0.660 2.17% 0.820 4.98% 0.656 3.38% 49.53 12.13% 35.18 109.28% 17.36 56.04%
U-Net 3 Plus Huang et al. (2020) 0.663 0.868 0.665 48.21 14.50 26.47

U-Net 3 Plus Edge 0.663 0.00% 0.862 0.69% 0.693 4.21% 49.44 2.55% 14.81 2.13% 21.13 20.17%
Swin U-Net Cao et al. (2023) 0.641 0.860 0.682 43.57 11.13 16.95

Swin U-Net Edge 0.628 2.02% 0.858 0.23% 0.675 1.02% 48.48 11.26% 13.81 24.07% 21.31 25.72%
Hybrid MR-U-Net Sahayam et al. (2022) 0.691 0.876 0.644 34.43 14.58 32.93

Hybrid MR-U-Net Edge 0.681 1.44% 0.847 3.31% 0.693 7.60% 40.70 18.21% 19.76 35.52% 20.88 36.59%

The swin transformer did not improve in any metrics when learning along with tar-
get edges. Additionally, it can be noted that the swin transformer is the only model that
uses linear artificial neural networks to learn features instead of convolutional layers.
Also, the whole tumor degrades in performance in dice score and Hausdorff95 distance
for all the models except U-Net and V-Net in the Hausdorff95 metric.

One possible explanation is that the recent models might have blocks that take care
of learning edges, like the swin transformer blocks and self-attention blocks in the swin
transformer and the dual attention blocks in hybrid MR-U-Net. It could also be that
the edge target models might require more parameters than their earlier counterparts,
like V-Net. Coincidentally, V-Net showed the most improvement in it has the highest
number of parameters. Also, learning edges along with tumors shows that even earlier
models like U-Net and V-Net could perform close to recent models like swin U-Net and
hybrid MR-U-Net.

For better explainability of the models trained on tumor regions with and without
tumor edges, the activation maps are generated by obtaining the predictions from the
last layer of each of the models. For example, a sample 2D axial one-hot slice and
activation map for hybrid MR-U-Net trained on tumor regions with and without edges
is shown in Figure 4. The models trained along with the edges appear to have sharper
edge activation than models trained without edges as targets. From Figure 4 (i) to (l), it
can be observed that the model trained with tumor regions along with edges had higher
activation (closer to 1.0) for tumor areas compared to the model trained with tumor
regions only as in Figure 4 (e) to (h). Also, the latter has low activation, marked by
purple color, for tumor regions that it shouldn’t predict. For example, the activation of
NCT/NET from Figure 4 (g) shouldn’t show activation for edema and enhancing tumor
regions. However, the model still has a low activation marked by the purple color. A
similar activation map is observed for all other models trained for tumor regions with
and without edges. The edges as targets might act as data-level attention to learn better
tumor and edge segments. Additionally, the higher activation for models trained with
tumor and edge regions could be the reason for improving the Hausdorff95 score.

1The values in bold represent the best performance of the existing and proposed models. The values
in blue are the overall best. and % denotes improvement, and and % denotes deterioration
of the proposed edge method to the normal method.
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Figure 4: (a) to (d) Shows the ground truth one-hot vector for background, edema, NC-
T/NET, and enhancing tumor. (e) to (h) shows the respective activation maps
generated by the hybrid MR-U-Net trained with only tumor regions. (i) to
(l) show the respective activation maps generated by the hybrid MR-U-Net
trained with the tumor and edge regions.

4.3 Detection of Under-represented Samples Using Dynamic Batch
Training for Brain Tumor Segmentation

Figure 5 depicts the workflow of dynamic batching for learning from hard samples.
Hard samples are data points with a higher loss value at the end of an epoch. The loss
for each sample is stored in a list and sorted in non-increasing order at the end of the
epoch. In the next epoch, δ percent of the whole dataset is selected for training. It
ends up training harder samples more than easier samples. δ is set at 20%. Two losses,
namely, a weighted focal loss and a false positive (FP) loss have been proposed to better
learn false positive cases in the dataset.

In the overall comparison Table 3, the models proposed in work have been compared
with popular U-Net models and other semantic segmentation models proposed in the
literature. It can be observed that the proposed hybrid model trained using a dynamic
batch with proposed hybrid focal losses achieved 8.81 and 12.81 in the whole tumor
and tumor core regions.

8



Dynamic
Batching

Deep
Learning
Models

240x240 240x240 240x240

240x240240x240

240x240x3

Input

FLAIR MRIT2 MRIT1CE MRI

240x240

Z - Score Normalization

240x240

Ground Truth

240x240

Target

Figure 5: Proposed Workflow of Dynamic Batching for Learning Hard Samples

Figure 6 shows a scatterplot between patient ID and the number of times a pa-
tient’s MR input image has been trained on the BraTS2020 dataset using traditional and
dynamic batch training methods. The provided information can help identify under-
represented hard samples. It could give a direction to study data points in which the
model fails to train. The regular hybrid MR-U-Net will see all the data points equiva-
lent to the number of epochs. Since the number of epochs for the hybrid MR-U-Net is
50, each sample is trained 50 times denoted by the green scatter points. The traditional
training method does not provide any additional information regarding the difficulty
of the data points learned. From the other three models trained using dynamic batch
training, it can be observed that the model sees a sample at least 25 times and up to a
maximum of 150 times. The patients that get trained 25 times are likely easier samples
to segment than those trained to around 150 times. So, the scatter plot given in Figure
6 has an excellent potential to identify, find, and take corrective measures to handle
outliers.
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Table 3: Shows the comparison study of various models in the literature with the
BraTS2020 validation dataset.

Dice Score ↑ Hausdorff95 ↓
Model

ET WT TC ET WT TC
U-Net Ronneberger et al. (2015) 0.688 0.875 0.649 36.15 15.15 26.90

V-Net Milletari et al. (2016) 0.664 0.873 0.673 51.19 15.94 24.69
3D U-Net Çiçek et al. (2016) 0.729 0.851 0.779 31.69 12.50 18.75

Attention U-Net Oktay et al. (2018) 0.646 0.863 0.679 56.37 16.81 27.09
U-Net 3 Plus Huang et al. (2020) 0.663 0.868 0.665 48.21 14.50 26.47

MTAU Awasthi et al. (2021) 0.570 0.730 0.610 38.87 20.81 24.22
Probabilistic U-Net Savadikar et al. (2021) 0.689 0.819 0.717 36.89 41.52 26.28

DRU-Net Colman et al. (2021) 0.670 0.880 0.670 47.62 12.11 15.74
MVP U-NetZhao et al. (2021) 0.670 0.860 0.620 47.33 12.58 50.14

3D U-Net Ballestar and Vilaplana (2021) 0.720 0.830 0.770 37.42 12.34 13.11
Swin U-Net Cao et al. (2023) 0.641 0.860 0.682 43.57 11.13 16.95

Hybrid MR-U-Net Sahayam et al. (2022) 0.691 0.876 0.644 34.43 14.58 32.93
Hybrid MR-U-Net Edge 0.681 0.847 0.693 40.70 19.76 20.88

Hybrid MR U-Net MFP Focal Loss 0.674 0.870 0.676 38.66 8.43 17.43
Hybrid MR U-Net Hybrid Focal Loss 0.674 0.874 0.710 41.62 8.81 12.81

Figure 6: Shows a scatterplot with patient ID vs. the number of times a patient’s MR
image has been trained.
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5 Conclusions
In conclusion, the works reviewed in the thesis have proposed modifications to the pop-
ular U-Net model for more accurate segmentation of brain tumors in MR images. The
first work proposed a model incorporating residual, multi-resolution, dual attention, and
deep supervision blocks to improve feature extraction and segmentation accuracy. The
proposed model achieved better results than the baseline U-Net regarding the Haus-
dorff95 and dice metrics for the whole tumor and enhancing tumor regions. However,
there is room for improvement in the segmentation of tumor core regions and general
improvement requirements in the Hausdorff95 score.

The second work addressed the issue of accurately segmenting tumor edges, which
are crucial for accurate diagnosis, surgical precision, and treatment planning. The pro-
posed edge-target training strategy uses Laplacian-like 3D filter to extract tumor edges
from the ground truth and trains the model to segment both the tumor regions and edges.
The proposed model achieved competitive results compared to popular U-Net models
and published literature in the BraTS2020 benchmark dataset. The edge maps gener-
ated by the model can be helpful for treatment planning. An activation map has been
generated to explain better the results obtained by the models with and without edge
information as target images.

The third work proposes a dynamic batch training method to improve the perfor-
mance of brain tumor segmentation has been proposed. The proposed method employs
two loss functions, namely, hybrid focal loss and means false positive focal loss, to
address the problem of class imbalance and false positives. The experimental results
showed that the proposed method outperformed several models in the literature regard-
ing Hausdorff distance and dice score metrics. A scatter plot has been created between
patient ID and the number of patients to demonstrate that the proposed dynamic batch
training can be used to identify under-represented and hard samples. The proposed dy-
namic batch training method can be a valuable tool in clinical settings, and identifying
hard samples can help researchers fine-tune the model, collect more data, and ultimately
lead to improved overall performance on the task at hand.

Overall, the segmentation of tumors from MR images is a challenging task. There
is still potential to develop end-to-end deep learning models for the segmentation task
before applications can be deployed for real-world segmentation problems. Until then,
deep learning segmentation models with post-processing and additional data for train-
ing can yield good performance. Future works could still focus on handling the false
positives in the absence of a tumor region and improving dice scores in the validation
dataset.

6 Organization of the Thesis
The proposed outline of the thesis is as follows:

(a) Chapter 1: Introduction

(b) Chapter 2: Related Work

(c) Chapter 3: Preliminaries: Popular U-Net Models
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(d) Chapter 4: Model-oriented Approach: Hybrid Multi-Resolution U-Net for Brain
Tumor Segmentation

(e) Chapter 5: Data-oriented Approach: Learning Tumor Edges and Segments for
Brain Tumor Segmentation Using Deep Learning

(f) Chapter 6: Detection of Under-represented Samples Using Dynamic Batch Train-
ing for Brain Tumor Segmentation

(g) Chapter 7: Conclusions and Future Work
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